4.5 Article

Definition and experimental evaluation of the smoke confinement velocity in tunnel fires

Journal

FIRE SAFETY JOURNAL
Volume 40, Issue 4, Pages 320-330

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.firesaf.2005.02.004

Keywords

tunnel fire; scale down model; exhaust vent; confinement velocity

Ask authors/readers for more resources

An experimental study is carried out on a reduced scale tunnel model (scale reduction is 1:20). The main objective is to evaluate the longitudinal velocity induced into a tunnel when a fire plume continuously released is confined and extracted between two exhaust vents located on both sides of the fire source. For the experimental simulations, fire-induced smoke is simulated by an air and helium mix release. Smoke flow is symmetrical as regards the fire location and experiments are realized for an half tunnel with only one vent activated downstream the source. The vent extraction flow rate is step by step increased and the length of the stratified smoke layer downstream the vent as well as the longitudinal fresh air flow induced, are measured. A confinement velocity is then associated to the minimum value of the longitudinal air flow needed to prevent the smoke layer propagation downstream the vent. This velocity is evaluated for several values of the fire heat release rate and finally compared with the corresponding critical velocity obtained for a longitudinal ventilation system. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available