4.8 Article

Hydrogen production through oxidative steam reforming of ethanol over Ni-based catalysts derived from La1-xCexNiO3 perovskite-type oxides

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 121, Issue -, Pages 1-9

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2012.03.017

Keywords

Perovskite-type oxides; Hydrogen production; Ethanol oxidative steam reforming; Deactivation mechanism; Nickel catalyst

Funding

  1. CNPq (CT-INFO/CT-HIDRO/MCT/CNPq) [490818/2007-2]

Ask authors/readers for more resources

This paper investigates the effect of lanthanum substitution by cerium oxide on the performance of La1-xCexNiO3 (x = 0, 0.05, 0.1, 0.4, 0.7 and 1.0) perovskite-type oxide precursor for the oxidative steam reforming of ethanol. All catalysts are active and selective to hydrogen but carbon deposition occurs except for La0.90Ce0.10NiO3. Increasing the Ce content decreases the amount of carbon deposited, which passes through a minimum at around 10 wt% of Ce and then increases. The higher resistance to carbon formation on La0.90Ce0.10NiO3 catalyst is due to the smaller Ni crystallite size. Furthermore, the support also plays an important role on catalyst stability during ethanol conversion reaction. The reduced La0.9Ce0.1NiO3 sample exhibits the highest amount of oxygen vacancies, which decreases as ceria content increases. This highly mobile oxygen reacts with carbon species as soon as it forms, and thus keeps the metal surface free of carbon, inhibiting deactivation. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available