4.7 Article

3D shape perception from combined depth cues in human visual cortex

Journal

NATURE NEUROSCIENCE
Volume 8, Issue 6, Pages 820-827

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn1461

Keywords

-

Categories

Ask authors/readers for more resources

Our perception of the world's three-dimensional (3D) structure is critical for object recognition, navigation and planning actions. To accomplish this, the brain combines different types of visual information about depth structure, but at present, the neural architecture mediating this combination remains largely unknown. Here, we report neuroimaging correlates of human 3D shape perception from the combination of two depth cues. We measured fMRI responses while observers judged the 3D structure of two sequentially presented images of slanted planes defined by binocular disparity and perspective. We compared the behavioral and fMRI responses evoked by changes in one or both of the depth cues. fMRI responses in extrastriate areas (hMT +/V5 and lateral occipital complex), rather than responses in early retinotopic areas, reflected differences in perceived 3D shape, suggesting 'combined-cue' representations in higher visual areas. These findings provide insight into the neural circuits engaged when the human brain combines different information sources for unified 3D visual perception.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available