4.6 Article

A self-closed thermal model for laser shock peening under the water confinement regime configuration and comparisons to experiments

Journal

JOURNAL OF APPLIED PHYSICS
Volume 97, Issue 11, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1915537

Keywords

-

Ask authors/readers for more resources

Laser shock peening (LSP) is emerging as a competitive alternative technology to classical treatments to improve fatigue and corrosion properties of metals for a variety of important applications. LSP under a water confinement regime (WCR) can produce plasma pressures on the target surface four times higher and two to three times longer than those under direct regime configurations. However, most of the published thermal models for LSP under WCR are not self-closed, and have free variables which have to come from experimental measurements under the same conditions. In this paper, a self-closed thermal model for LSP under WCR configurations is presented. This model has considered most of the relevant physical processes for laser ablation and plasma formation and expansion, and there are no free variables in the model. The simulation results for pressures from the model are compared with the available experimental results in literature under a variety of laser-pulse conditions, and good agreements are found. (C) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available