4.7 Article

Identifying optimal incomplete phylogenetic data sets from sequence databases

Journal

MOLECULAR PHYLOGENETICS AND EVOLUTION
Volume 35, Issue 3, Pages 528-535

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ympev.2005.02.008

Keywords

maximal biclique; quasi-biclique; missing data; supermatrix

Ask authors/readers for more resources

We introduce a new method for identifying optimal incomplete data sets from large sequence databases based on the graph theoretic concept of alpha-quasi-bicliques. The quasi-biclique method searches large sequence databases to identify useful phylogenetic data sets with a specified amount of missing data while maintaining the necessary amount of overlap among genes and taxa. The utility of the quasi-biclique method is demonstrated on large simulated sequence databases and on it data set of green plant sequences from GenBank. The quasi-biclique method greatly increases the taxon and gene sampling in the data sets while adding only a limited amount of missing data. Furthermore, under the conditions of the simulation, data sets with a limited amount of missing data often produce topologies nearly as accurate as those built from complete data sets. The quasi-biclique method will be an effective tool for exploiting sequence databases for phylogenetic information and also may help identify critical sequences needed to build large phylogenetic data sets. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available