4.7 Article

The stoichiometry and antenna size of the two photosystems in marine green algae, Bryopsis maxima and Ulva pertusa, in relation to the light environment of their natural habitat

Journal

JOURNAL OF EXPERIMENTAL BOTANY
Volume 56, Issue 416, Pages 1517-1523

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jxb/eri147

Keywords

antenna size of PSI and PSII; Bryopsis maxima; light environment; PSII : PS I ratio; marine green algae; Ulva pertusa

Categories

Ask authors/readers for more resources

The stoichiometry and antenna sizes of the two photosystems in two marine green algae, Bryopsis maxima and Ulva pertusa, were investigated to examine whether the photosynthetic apparatus of the algae can be related to the light environment of their natural habitat. Bryopsis maxima and Ulva pertusa had chlorophyll (Chl) a/b ratios of 1.5 and 1.8, respectively, indicating large levels of Chl b, which absorbs blue-green light, relative to Chl a. The level of photosystem (PS) II was equivalent to that of PS I in Bryopsis maxima but lower than that of PS I in Ulva pertusa. Analysis of Q(A) photoreduction and P-700 photo-oxidation with green light revealed that > 50% of PS II centres are non-functional in electron transport. Thus, the ratio of the functional PS II to PS I is only 0.46 in Bryopsis maxima and 0.35 in Ulva pertusa. Light-response curves of electron transport also provided evidence that PS I had a larger light-harvesting capacity than did the functional PS II. Thus, there was a large imbalance in the light absorption between the two photosystems, with PS I showing a larger total light-harvesting capacity than PS II. Furthermore, as judged from the measurements of low temperature fluorescence spectra, the light energy absorbed by Chl b was efficiently transferred to PS I in both algae. Based on the above results, it is hypothesized that marine green algae require a higher ATP:NADPH ratio than do terrestrial plants to grow and survive under a coastal environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available