4.8 Article

Novel urea assisted hydrothermal synthesis of hierarchical BiVO4/Bi2O2CO3 nanocomposites with enhanced visible-light photocatalytic activity

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 110, Issue -, Pages 286-295

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2011.09.014

Keywords

Hierarchical structures; BiVO4/Bi2O2CO3; Nanosheet; Visible light; Photocatalysis

Funding

  1. National Natural Science Foundation of China [20877061, 51072154]
  2. Natural Science Foundation of Hubei Province [2010CDA078]
  3. National Basic Research Program of China [2007CB613302]
  4. SKLWUT

Ask authors/readers for more resources

A novel hydrothermal approach is developed for the first time to synthesize hierarchical BiVO4/Bi2O2CO3 nanocomposites with reactive crystalline facets using urea as a morphology mediator. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy. N-2 absorption-desorption isotherms and UV-visible diffuse reflectance spectroscopy. The photocatalytic activity of the as-prepared samples was evaluated towards degradation of Rhodomine B (RhB) by visible-light. Our results indicate that both physical parameters and associated photocatalytic activity of BiVO4/Bi2O2CO3 nanocomposites can be tuned by urea concentration and reaction time in the synthesis process. With increasing urea concentration, the specific surface area, pore volume and average pore size increase. Compared to BiVO4 and Bi2O2CO3 bulk counterpart, BiVO4/Bi2O2CO3 nanocomposites show enhanced photocatalytic degradation activity of RhB. The mechanisms for the formation of BiVO4/Bi2O2CO3 nanocomposites and enhanced photoreactivity are discussed. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available