4.7 Article

Lubrication flow between a cavity and a flexible wall

Journal

PHYSICS OF FLUIDS
Volume 17, Issue 6, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1914819

Keywords

-

Ask authors/readers for more resources

Lubrication flows near deformable solid boundaries occur in a diverse range of settings including coating and printing processes, biological systems, and suspensions. In order to examine the effect of surface topography on the elastohydrodynamic interactions that arise in these flows, the flow between a rigid cavity and a flexible wall is studied. Reynolds equation for the fluid is coupled to a model for the wall which is backed by a series of springs and/or held by a uniform tension force. The resulting nonlinear ordinary differential equations are then solved numerically to obtain pressure profiles and wall positions. When the wall modulus or tension is large relative to viscous forces, the wall hardly deforms and both a pressure mountain and valley are observed due to the gap change produced by the cavity topography. When the wall modulus and tension are small relative to viscous forces, the wall easily deforms and assumes a shape similar to that of the cavity. The pressure profiles are also dramatically altered and in some cases show only a valley without a mountain. Cavity shape is found to have a significant influence on both the pressure profiles and the wall deformation. The results suggest that surface topography may significantly modify the elastohydrodynamic interactions that arise in lubrication flows near deformable solid boundaries. (c) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available