4.7 Article

Double porosity finite element method for borehole modeling

Journal

ROCK MECHANICS AND ROCK ENGINEERING
Volume 38, Issue 3, Pages 217-242

Publisher

SPRINGER WIEN
DOI: 10.1007/s00603-005-0052-9

Keywords

double porosity; finite element method; inclined borehole; poro-mechanics; fractured porous media

Ask authors/readers for more resources

This paper considers the mechanical and hydraulic response around an arbitrary oriented borehole drilled in a naturally fractured formation. The formation is treated as a double porosity medium consisting of the primary rock matrix as well as the fractured systems, which are each distinctly different in porosity and permeability. The poro-mechanical formulations that couple matrix and fracture deformations as well as fluid flow aspects are presented. A double porosity and double permeability finite element solution for any directional borehole drilled in the fractured porous medium is given. Compared with conventional single-porosity analyses, the proposed double-porosity solution has a larger pore pressure in the matrix and a smaller tensile stress in the near-wellbore region. The effects of time, fracture, mud weight, and borehole inclination in the double-porosity solution are parametrically studied to develop a better understanding of physical characteristics governing borehole problems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available