4.7 Article

Correlates of hippocampal neuron number in Alzheimer's disease and ischemic vascular dementia

Journal

ANNALS OF NEUROLOGY
Volume 57, Issue 6, Pages 896-903

Publisher

WILEY-LISS
DOI: 10.1002/ana.20503

Keywords

-

Funding

  1. NIA NIH HHS [P50 AG16570, R01 AG010897, R01 AG017155, 1P01 AG12435, P01 AG012435, P50 AG016570, 1-R01-AG17155] Funding Source: Medline

Ask authors/readers for more resources

The cornu ammonis 1 region of the hippocampus (CA1) sector of hippocampus is vulnerable to both Alzheimer's disease (AD)-type neurofibrillary degeneration and anoxia-ischemia. The objective of this article is to compare number and size of neurons in CA1 in AD versus ischemic vascular dementia. Unbiased stereological methods were used to estimate the number and volume of neurons in 28 autopsy-derived brain samples. For each case, the entire hippocampus from one cerebral hemisphere was sliced into 5mm slabs (5-7 slabs/case), cut into 50μ m sections, and stained with gallocyanine. Using the optical dissector, we systematically sampled the number and size of neurons throughout the extent of CA1 and CA2. The total number of neurons was significantly less in AD compared with ischemic vascular dementia (p < 0.02), but there was no significant difference in neuron size. The greatest loss of neurons was observed in two cases with combined AD and hippocampal sclerosis. Regardless of causative diagnosis, the number of CA1 neurons correlates with magnetic resonance imaging-derived hippocampal volume (r = 0.72; p < 0.001) and memory score (r = 0.62; p < 0.01). We conclude that although CA1 neuron loss is more consistently observed in AD than ischemic vascular dementia, severity of loss shows the expected correlation with structure and function across causative subtype. Reductions in magnetic resonance imaging-derived hippocampal volume reflect loss, rather than shrinkage, of CA1 neurons.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available