4.7 Article

Ezrin oligomers are the membrane-bound dormant form in gastric parietal cells

Journal

AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY
Volume 288, Issue 6, Pages C1242-C1254

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpcell.00521.2004

Keywords

fluorescence resonance energy transfer; acid secretion; radixin; moesin; cytoskeleton; ERM family

Funding

  1. NCRR NIH HHS [RR12961, RR01614] Funding Source: Medline
  2. NIDDK NIH HHS [DK-38972, DK-10141] Funding Source: Medline

Ask authors/readers for more resources

The NH2- and COOH-terminal association domains of ERM proteins, known respectively as N-ERMAD and C-ERMAD, participate in interactions with membrane proteins and F-actin, and intramolecular and intermolecular interactions within and among ERM proteins. In gastric parietal cells, ezrin is heavily represented on the apical membrane and is associated with cell activation. Ezrin-ezrin interactions are presumably involved in functional regulation of ezrin and thus became a subject of our study. Fluorescence resonance energy transfer (FRET) was examined with cyan fluorescent protein (CFP)- and yellow fluorescent protein (YFP)-tagged ezrin incorporated into HeLa cells and primary cultures of parietal cells. Constructs included YFP at the NH2 terminus of ezrin (YFP-Ez), CFP at the COOH terminus of ezrin (Ez-CFP), and double-labeled ezrin (N-YFP-ezrin-CFP-C). FRET was probed using fluorescence microscopy and spectrofluorometry. Evidence of ezrin oligomer formation was found using FRET in cells coexpressing Ez-CFP and YFP-Ez and by performing coimmunoprecipitation of endogenous ezrin with fluorescent protein-tagged ezrin. Thus intermolecular NH2- and COOH-terminal association domain (N-C) binding in vivo is consistent with the findings of earlier in vitro studies. After the ezrin oligomers were separated from monomers, FRET was observed in both forms, indicating intramolecular and intermolecular N-C binding. When the distribution of native ezrin as oligomers vs. monomers was examined in resting and maximally stimulated parietal cells, a shift of ezrin oligomers to the monomeric form was correlated with stimulation, suggesting that ezrin oligomers are the membrane-bound dormant form in gastric parietal cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available