4.8 Article

Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 93, Issue 3-4, Pages 346-353

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2009.09.040

Keywords

Methane reforming; LaNiO3 catalysts; In situ XAS; Nickel perovskite; Partial oxidation of methane

Funding

  1. Spanish Ministry of Science and Education [ENE2004-01660, ENE2007-67926-C02-01, P07-FQM-02520]

Ask authors/readers for more resources

The objective of the present work has been the study of the physicochemical and catalytic properties of a Ni/La2O3 catalyst obtained by reduction of a lanthanum nickelite, LaNiO3, with perovskite structure. The perovskite, obtained by means of a spray pyrolysis method, provides a Ni/La2O3 system active in different methane reforming reactions. The catalyst was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), X-Ray photoemission spectroscopy (XPS), temperature-programmed reduction and oxidation (TPR, TPO) and catalytic activity tests. Although not evidenced by XRD data, XAS and TPR measurements show the presence of an amorphous NiO phase in the original sample, together with the crystalline LaNiO3 phase. Upon reoxidation treatment of the reduced Ni/La2O3 catalyst, the LaNiO3 structure is partly recovered which provides a convenient way to regenerate a waste catalyst (reoxidation and new reduction in hydrogen). The catalyst is active in several reactions of methane with oxygen, water and CO2, showing a remarkable stability specially under dry reforming of methane (DRM) reaction conditions. This quite great catalytic performance has been explained by the high resistance of the nickel particles to be oxidized, as detected by in situ XAS. In the presence of water, as in steam reforming of methane (SRM) reaction conditions, these metallic particles are gradually oxidized, which explains the linear decreasing of the catalytic performance observed for the SRM reaction. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available