4.6 Article

Ribosomal RNA in Alzheimer disease is oxidized by bound redox-active iron

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 22, Pages 20978-20986

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M500526200

Keywords

-

Funding

  1. NIGMS NIH HHS [GM26796] Funding Source: Medline
  2. NINDS NIH HHS [NS38648] Funding Source: Medline

Ask authors/readers for more resources

Oxidative modification of cytoplasmic RNA in vulnerable neurons is an important, well documented feature of the pathophysiology of Alzheimer disease. Here we report that RNA-bound iron plays a pivotal role for RNA oxidation in vulnerable neurons in Alzheimer disease brain. The cytoplasm of hippocampal neurons showed significantly higher redox activity and iron(II) staining than age-matched controls. Notably, both were susceptible to RNase, suggesting a physical association of iron( II) with RNA. Ultrastructural analysis further suggested an endoplasmic reticulum association. Both rRNA and mRNA showed twice the iron binding as tRNA. rRNA, extremely abundant in neurons, was considered to provide the greatest number of iron binding sites among cytoplasmic RNA species. Interestingly, the difference of iron binding capacity disappeared after denaturation of RNA, suggesting that the higher order structure may contribute to the greater iron binding of rRNA. Reflecting the difference of iron binding capacity, oxidation of rRNA by the Fenton reaction formed 13 times more 8-hydroxyguanosine than tRNA. Consistent with in situ findings, ribosomes purified from Alzheimer hippocampus contained significantly higher levels of RNase-sensitive iron( II) and redox activity than control. Furthermore, only Alzheimer rRNA contains 8-hydroxyguanosine in reverse transcriptase-PCR. Addressing the biological significance of ribosome oxidation by redox-active iron, in vitro translation with oxidized ribosomes from rabbit reticulocyte showed a significant reduction of protein synthesis. In conclusion these results suggest that rRNA provides a binding site for redoxactive iron and serves as a redox center within the cytoplasm of vulnerable neurons in Alzheimer disease in advance of the appearance of morphological change indicating neurodegeneration.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available