4.6 Article

Cytokines induce nitric oxide-mediated mtDNA damage and apoptosis in oligodendrocytes

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 22, Pages 21673-21679

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.m411531200

Keywords

-

Ask authors/readers for more resources

Nitric oxide (NO) that is produced by inducible NO synthase (iNOS) in glial cells is thought to contribute significantly to the pathogenesis of multiple sclerosis. Oligodendrocytes can be stimulated to express iNOS by inflammatory cytokines, which are known to accumulate in the multiple sclerotic brain. The potentially pathological levels of NO produced under these circumstances can target a wide spectrum of intracellular components. We hypothesized that one of the critical targets for damage that leads to disease is mtDNA. In this study, we found that cytokines, in particular a combination of tumor necrosis factor-alpha (50 ng/ml) and IFN gamma (25 ng/ml), cause elevated NO production in primary cultures of rat oligodendrocytes. Western blot analysis revealed a strong enhancement of iNOS expression 48 h after cytokine treatment. Within the same time period, NO-mediated mtDNA damage was shown by Southern blot analysis and by ligation-mediated PCR. Targeting the DNA repair enzyme human 8-oxoguanine DNA glycosylase (hOGG1) to the mitochondria of oligodendrocytes had a protective effect against this cytokine-mediated mtDNA damage. Moreover, it was shown that mitochondrial transport sequence hOGG1-transfected oligodendrocytes had fewer apoptotic cells compared with cells containing vector only following treatment with the cytokines. Subsequent experiments revealed that targeting hOGG1 to mitochondria reduces the activation of caspase-9, showing that this recombinant protein works to reduce apoptosis that is occurring through a mitochondria-based pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available