4.7 Article

Morphology changes in the evolution of liquid two-layer films

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 122, Issue 22, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1927512

Keywords

-

Ask authors/readers for more resources

We consider a thin film consisting of two layers of immiscible liquids on a solid horizontal (heated) substrate. Both the free liquid-liquid and the liquid-gas interface of such a bilayer liquid film may be unstable due to effective molecular interactions relevant for ultrathin layers below 100-nm thickness, or due to temperature-gradient-caused Marangoni flows in the heated case. Using a long-wave approximation, we derive coupled evolution equations for the interface profiles for the general nonisothermal situation allowing for slip at the substrate. Linear and nonlinear analyses of the short- and long-time film evolution are performed for isothermal ultrathin layers, taking into account destabilizing long-range and stabilizing short-range molecular interactions. It is shown that the initial instability can be of a varicose, zigzag, or mixed type. However, in the nonlinear stage of the evolution the mode type, and therefore the pattern morphology, can change via switching between two different branches of stationary solutions or via coarsening along a single branch.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available