4.8 Article

Effects of pyrolysis temperature and Pt-loaded catalysts on polar-aromatic content in tire-derived oil

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 91, Issue 1-2, Pages 300-307

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2009.05.038

Keywords

Waste tire; Pyrolysis; Polar-aromatics; Pt; Zeolite

Funding

  1. Petroleum and Petrochemical Consortium
  2. Thailand Research Fund (TRF)
  3. Neighboring Countries of Chulalongkorn University

Ask authors/readers for more resources

This study investigates the influences of pyrolysis temperatures and Pt-supported catalysts on polar-aromatic content in the oils obtained from pyrolysis of waste tire. These polar-aromatic compounds are mostly the sulfur-containing aromatics since oxygen is prohibited in pyrolysis. The experimental results indicated that pyrolysis temperatures strongly affected the polar-aromatic content in the derived oils. Namely, the increase in pyrolysis temperature in the tested range produced not only a higher amount of polar-aromatics but also heavier polar-aromatic compounds. All studied catalysts decreased the polar-aromatic content in the oils drastically. In addition, it was found that the introduction of the studied catalyst also led to the production of lighter polar-aromatic compounds with respect to that produced from thermal pyrolysis. Comparing the two acid catalysts, HBETA exhibited higher activity for polar-aromatic reduction as compared to HMOR, which was ascribed to its higher medium and strong acid site density, smaller particle size and 3D-structure. The Pt supported on HMOR and HBETA catalysts showed better polar-aromatic reduction activity than their corresponding acid catalysts. And, a slightly higher catalytic activity was observed over Pt/HBETA than Pt/HMOR, which was mainly due to the higher Pt dispersion of Pt/HBETA catalyst. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available