4.5 Article

Combined effect of chain length and phase state on adhesion/friction behavior of self-assembled monolayers

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 109, Issue 22, Pages 11301-11306

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp051232t

Keywords

-

Ask authors/readers for more resources

The combined effects of phase state and chain length on the adhesion and friction behavior of self-assembled monolayers (SAMs) are demonstrated using atomic force microscopy (AFM). The phase state of n-alkyltrichlorosilane monolayers of varying chain length (C-8, C-12, and C-18) was controlled by adjusting the preparation temperature. The adhesion forces and friction coefficients were observed to increase dramatically around the phase-transition temperature of each monolayer. The phase state effect was more prominent for the longer chain SAMs, which is attributed to the larger deformation volume associated with disordered monolayers. The adhesion/friction diagram for chain length effect with a wide range of phase states is successfully presented. This study reveals that the chain length effect on adhesion/friction can be correctly evaluated by examining the phase-state dependence of adhesion/friction behind the chain length effect.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available