4.6 Review

p73 induces apoptosis by different mechanisms

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2005.03.156

Keywords

p53; p63; p73; apoptosis; cell death; DNA damage; scotin; PUMA; Bax; CD95; death receptor; cancer

Funding

  1. Telethon [GGP02251] Funding Source: Medline

Ask authors/readers for more resources

p73, like its homologue, the tumor suppressor p53, is able to induce apoptosis in several cell types. This property is important for the involvement of p73 in cancer development and therapy. However, in contrast with p53, the TAp73 gene has two distinct promoters coding for two protein isoforms with opposite effects: while the transactivation proficient TAp73 shows pro-apoptotic effects, the amino-terminal-deleted Delta Np73 has an anti-apoptotic function. Indeed, the relative expression of these two proteins is related to the prognosis of several cancers. Here we discuss recent developments in the control of p73-induced apoptosis. First, TAp73 induces ER stress via the direct transactivation of Scotin. Second, TAp73 induces the mitochondrial pathway by directly transactivating both Bax and the BH3 only protein PUMA promoters. While the first transactivation is weak, and not sufficient to trigger apoptosis (at least in the in vitro cellular models so far evaluated), the induction of PUMA is strong and lethal. Third, the promoter of the death receptor CD95 contains a p53 responsive element and preliminary experiments suggest that TAp73 also activates the death receptor pathway. In addition, TAp73 is able to transactivate its own second promoter, thus inducing the expression of the antiapoptotic Delta Np73 isoform. Therefore, the balance between TAp73 and Delta Np73 finely regulates cellular sensitivity to death. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available