4.6 Article

Mode-locking of monolithic laser diodes incorporating coupled-resonator optical waveguides

Journal

OPTICS EXPRESS
Volume 13, Issue 12, Pages 4539-4553

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OPEX.13.004539

Keywords

-

Categories

Ask authors/readers for more resources

We investigate the operational principle of mode-locking in monolithic semiconductor lasers incorporating coupled-resonator optical waveguides. The size of mode-locked lasers operating at tens of GHz repetition frequencies can be drastically reduced owing to the significantly decreased group velocity of light. The dynamics of such devices are analyzed numerically based on a coupled-oscillator model with the gain, loss, spontaneous emission, nearest-neighbor coupling and amplitude phase coupling (as described by the linewidth enhancement factor alpha) taken into account. It is demonstrated that active mode-locking can be achieved for moderate alpha parameter values. Simulations also indicate that large alpha parameters may destabilize the mode-locking behavior and result in irregular pulsations, which nevertheless can be effectively suppressed by incorporating detuning of individual cavity resonant frequencies in the device design. (C) 2005 Optical Society of America.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available