4.6 Article

FliC-specific CD4+ T cell responses are restricted by bacterial regulation of antigen expression

Journal

JOURNAL OF IMMUNOLOGY
Volume 174, Issue 12, Pages 7929-7938

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.174.12.7929

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [AI47242] Funding Source: Medline

Ask authors/readers for more resources

Salmonella typhimurium, a facultatively intracellular pathogen, regulates expression of virulence factors in response to distinct environments encountered during the course of infection. We tested the hypothesis that the transition from extra- to intracellular environments during Salmonella infection triggers changes in Ag expression that impose both temporal and spatial limitations on the host T cell response. CD4+ T cells recovered from Salmonella immune mice were propagated in vitro using Ag derived from bacteria grown in conditions designed to emulate extra- or intracellular environments in vivo. Extracellular phase bacteria supported a dominant T cell response to the flagellar subunit protein FliC, whereas intracellular phase bacteria were unable to support expansion of FliC-specific T cells from populations known to contain T cells with reactivity to this Ag. This result was attributed to bacterial regulation of FliC expression: transcription and protein levels were repressed in bacteria growing in the spleens of infected mice. Furthermore, Salmonella-infected splenocytes taken directly ex vivo stimulated FliC-specific T cell clones only when intracellular FliC expression was artificially up-regulated. Although it has been suggested that a microanatomical separation of immune T cells and infected APC exists in vivo, we demonstrate that intracellular Salmonella can repress FliC expression below the T cell activation threshold. This potentially provides a mechanism for intracellular Salmonella at systemic sites to avoid detection by Ag-specific T cells primed at intestinal sites early in infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available