4.5 Article

Relevance measures for subset variable selection in regression problems based on k-additive mutual information

Journal

COMPUTATIONAL STATISTICS & DATA ANALYSIS
Volume 49, Issue 4, Pages 1205-1227

Publisher

ELSEVIER
DOI: 10.1016/j.csda.2004.07.026

Keywords

subset variable selection; regression; mutual information; Shannon entropy; Mobius representation; k-additive measure

Ask authors/readers for more resources

In the framework of subset variable selection for regression, relevance measures based on the notion of mutual information are studied. Results on the estimation of this index of stochastic dependence in a continuous setting are first presented. They are grounded on kernel density estimation which makes the overall estimation of the mutual information quadratic. The behavior of the mutual information as a relevance measure is then empirically studied on several regression problems. The considered problems are artificially generated to contain irrelevant and redundant candidate explanatory variables as well as strongly nonlinear relationships. Next, still in a subset variable selection context, computationally more efficient approximations of the mutual information based on the notion of k-additive truncation are proposed. The 2- and 3-additive truncations appear to be of practical interest as relevance measures. The 2-additive truncation is based on the computation of the approximate relevance of a set of potential predictors from the relevance values of the singletons and pairs it contains. The 3-additive truncation additionally involves the relevance values of the 3-element subsets. The lower the amount of redundancy among the candidate explanatory variables, the better these approximations. The sample behavior of the two resulting relevance measures is finally empirically studied on the previously generated nonlinear artificial regression problems. (c) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available