4.8 Article Proceedings Paper

Improvements to active material for VRLA batteries

Journal

JOURNAL OF POWER SOURCES
Volume 144, Issue 2, Pages 426-437

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2004.11.004

Keywords

lead-acid batteries; active material; impurities; additives; glass; separators

Ask authors/readers for more resources

In the past several years, there have been many developments in the materials for lead-acid batteries. Silver in grid alloys for high temperature climates in SLI batteries has increased the silver content of the recycled lead stream. Concern about silver and other contaminants in lead for the active material for VRLA batteries led to the initiation of a study by ALABC at CSIRO. The study evaluated the effects of many different impurities on the hydrogen and oxygen evolution currents in float service for flooded and VRLA batteries at different temperatures and potentials. The study results increased the understanding about the effects of various impurities in lead for use in active material, as well as possible performance and life improvements in VRLA batteries. Some elements thought to be detrimental have been found to be beneficial. Studies have now uncovered the effects of the beneficial elements as well as additives to both the positive and negative active material in increasing battery capacity, extending life and improving recharge. Glass separator materials have also been re-examined in light of the impurities study. Old glass compositions may be revived to give improved battery performance via compositional changes to the glass chemistry. This paper reviews these new developments and outline suggestions for improved battery performance based on unique impurities and additives. (c) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available