4.5 Article

Mechanisms of methanol decomposition on platinum: A combined experimental and ab initio approach

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 109, Issue 23, Pages 11622-11633

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0501188

Keywords

-

Ask authors/readers for more resources

The dual path mechanism for methanol decomposition on well-defined low Miller index platinum single crystal planes, Pt(111), Pt(110), and Pt(100), was studied using a combination of chronoamperometry, fast scan cyclic voltammetry, and theoretical methods. The main focus was on the electrode potential range when the adsorbed intermediate, COad, is stable. At such CO stability potentials, the decomposition proceeds through a pure dehydrogenation reaction, and the dual path mechanism is then independent of the electrodesubstrate surface structure. However, the threshold potential where the decomposition of methanol proceeds via parallel pathways, forming other than COad products, depends on the surface structure. This is rationalized theoretically. To gain insights into the controlling surface chemistry, density functional theory calculations for the energy of dehydrogenation were used to approximate the potential-dependent methanol dehydrogenation pathways over aqueous-solvated platinum interfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available