4.6 Article

Involvement of GADD153 and cardiac ankyrin repeat protein in hypoxia-induced apoptosis of H9c2 cells

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 24, Pages 23122-23129

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M501095200

Keywords

-

Ask authors/readers for more resources

Oxidative stress is the main cause of cardiac injury during ischemia/reperfusion but the molecular mechanism for this process is unclear. In this study, it was found that hypoxia induces apoptosis in rat embryonic heart-derived H9c2 cells leading to the induction of GADD153, which is an apoptosis-related gene. Therefore, this study addressed the molecular role of GADD153 in hypoxia-induced apoptosis. The stable or inducible overexpression of GADD153 sensitized the H9c2 cells to apoptotic cell death. The results suggest that the transactivation domain of the GADD153 might be responsible for this cell execution and play a role in the nucleoplasmic localization of GADD153. The cells transiently transfected with the antisense GADD153 were more resistant to hypoxia-induced apoptosis than the vector control cells. Furthermore, GADD153 transcriptionally down-regulated the expression of the cardiac ankyrin repeat protein gene (CARP), which is a nuclear transcriptional co-factor that negatively regulates the expression of the cardiac gene. The ectopic expression of CARP in H9c2 cells increased the resistance to hypoxia-induced apoptosis. These results suggest that GADD153 overexpression and the concomitant down-regulation of CARP might have a causative role in the apoptotic cell injury of hypoxic H9c2 cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available