4.6 Article

Amidation and structure relaxation abolish the neurotoxicity of the prion peptide PrP106-126 in vivo and in vitro

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 24, Pages 23114-23121

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M500210200

Keywords

-

Ask authors/readers for more resources

One of the major pathological hallmarks of transmissible spongiform encephalopathies (TSEs) is the accumulation of a pathogenic (scrapie) isoform (PrPSc) of the cellular prion protein (PrPC) primarily in the central nervous system. The synthetic prion peptide PrP106-126 shares many characteristics with PrPSc in that it shows PrPC-dependent neurotoxicity both in vivo and in vitro. Moreover, PrP106-126 in vitro neurotoxicity has been closely associated with the ability to form fibrils. Here, we studied the in vivo neurotoxicity of molecular variants of PrP106-126 toward retinal neurons using electroretinographic recordings in mice after intraocular injections of the peptides. We found that amidation and structure relaxation of PrP106-126 significantly reduced the neurotoxicity in vivo. This was also found in vitro in primary neuronal cultures from mouse and rat brain. Thioflavin T binding studies showed that amidation and structure relaxation significantly reduced the ability of PrP106-126 to attain fibrillar structures in physiological salt solutions. This study hence supports the assumption that the neurotoxic potential of PrP106-126 is closely related to its ability to attain secondary structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available