4.6 Article

The absorption spectrum of water near 750 nm by CW-CRDS: contribution to the search of water dimer absorption

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 7, Issue 12, Pages 2460-2467

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/b502172c

Keywords

-

Ask authors/readers for more resources

The absorption spectrum of natural water vapour around 750 nm has been recorded with a typical sensitivity of 3 x 10(-10) cm(-1) using a cw cavity ring down spectroscopy set up based on a Ti:sapphire laser. The 13 312.4-13 377.7 cm(-1) spectral interval was chosen as it corresponds to the region where water dimer absorption was recently measured (K. Pfeisticker et al., Science, 2003, 300, 2078-2080). The line parameters (wavenumber and intensity) of a total of 286 lines of water vapor were measured by a one by one fit of the lines to a Voigt profile. For the main water isotopologue, 276 lines were measured with line intensities as weak as 5 x 10(-29) cm molecule(-1) i.e. about 50 times smaller than the weakest (H2O)-O-16 line intensities included in the 2004 edition of the HITRAN database. On the basis of the predictions of Schwenke and Partridge, all but 16 lines could be assigned to different isotopologues of water ((H2O)-O-16 (H2O)-O-18, and (HDO)-O-16) present in natural abundance in the sample. A total of 272 energy levels of (H2O)-O-16 were determined and rovibrationally assigned to 18 upper vibrational states. Half of them had not been reported previously. The importance of the additional absorbance resulting from the observation of many new weak lines is discussed in relation to the detection of water dimer absorption and compared to the absorbance predicted by Schwenke and Partridge. The quality of the line parameters of water monomer is shown to be of crucial importance to identify the absorbance of the water dimer in the considered region.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available