4.6 Article

Synthesis of reverse micelle α-FeOOH nanoparticles in ionic liquid as an only electrolyte: Inhibition of electron-hole pair recombination for efficient photoactivity

Journal

APPLIED CATALYSIS A-GENERAL
Volume 469, Issue -, Pages 33-44

Publisher

ELSEVIER
DOI: 10.1016/j.apcata.2013.09.046

Keywords

alpha-FeOOH nanoparticles; Ionic liquid; Reverse micelle; Photo-Fenton-like; 2-Chlorophenol

Funding

  1. Universiti Teknologi Malaysia [01H59, 4L112]
  2. Exploration Research Grant Scheme from Ministry of Higher Education Malaysia
  3. King's Scholarship and Fellowship Scheme from Universiti Malaysia Pahang (Rohayu Jusoh)
  4. Hitachi Scholarship Foundation

Ask authors/readers for more resources

Discrete alpha-FeOOH nanoparticles (5-10 nm) were synthesized by a simple electrochemical method using an ionic liquid (IL), dodecyltrimethylammonium bromide (IL - FeOOH). IL that acts as an only electrolyte is capable of producing IL - FeOOH nanoparticles without any agglomeration. Its crystallinity, morphology, functional characteristics, and surface area were analyzed using an X-ray diffractometer, a transmission electron microscope, a Fourier-transform infrared spectrometer, and the Brunnauer-Emmett-Teller (BET) method, respectively. The characterization results verified that reverse micelle formation of IL plays an important role in the stabilization and miniaturization of the alpha-FeOOH nanoparticles. The activity of IL-FeOOH was tested on a photo-Fenton-like degradation of 2-chlorophenol (2-CP). Results showed that a nearly neutral condition of pH 5 was able to completely degrade 2-CP within 180 min of reaction at 50 degrees C, using 0.03 g L-1 of catalyst dosage and 50 mg L-1 of 2-CP initial concentration, with only a small amount of H2O2 (0.156 mM). It was found that the reverse micelle formed around the catalyst surface could trap the photogenerated electron to inhibit the recombination of photo-induced electron-hole pairs thus enhancing its catalytic activity. Kinetic studies using the Langmuir-Hinshelwood model illustrated that a surface reaction was the controlling step of the process. A reusability study showed that the catalyst was still stable after four subsequent reactions as shown by infrared spectroscopy. The results provide strong evidence to support the potential use of using IL as an alternative electrolyte to synthesize photo-Fenton-like nanocatalyst that can be used to treat organic pollutants such as 2-CP. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available