4.8 Article

Enols are common intermediates in hydrocarbon oxidation

Journal

SCIENCE
Volume 308, Issue 5730, Pages 1887-1889

Publisher

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.1112532

Keywords

-

Ask authors/readers for more resources

Models for chemical mechanisms of hydrocarbon oxidation rely on spectrometric identification of molecular structures in flames. Carbonyl (keto) compounds are well-established combustion intermediates. However, their less-stable enol tautomers, bearing OH groups adjacent to carbon-carbon double bonds, are not included in standard models. We observed substantial quantities of two-, three-, and four-carbon enols by photoionization mass spectrometry of flames burning representative compounds from modern fuel blends. Concentration profiles demonstrate that enol flame chemistry cannot be accounted for purely by keto-enol tautomerization. Currently accepted hydrocarbon oxidation mechanisms will likely require revision to explain the formation and reactivity, of these unexpected compounds.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available