4.6 Article Proceedings Paper

Variational solutions for the discrete nonlinear Schrodinger equation

Journal

MATHEMATICS AND COMPUTERS IN SIMULATION
Volume 69, Issue 3-4, Pages 322-333

Publisher

ELSEVIER
DOI: 10.1016/j.matcom.2005.01.015

Keywords

discrete nonlinear Schrodinger equation; variational solutions; optical pulses

Ask authors/readers for more resources

The interaction and propagation of optical pulses in a nonlinear waveguide array is described by the discrete nonlinear Schrodinger equation i partial derivative(z)psi(n) = -D(psi(n+1) + psi(n-1) - 2 psi(n)) - gamma vertical bar psi(n)vertical bar(2)psi(n), where D is a dispersion (or diffraction) coefficient, and gamma is a measure of the nonlinearity. By means of the variational approximation, we study the discrete soliton solutions of this equation. We use a trial function which contains six parameters, corresponding to: position, phase, amplitude, wavevector (velocity), chirp, and width. With this trial function, we can analytically average the Lagrangian, and then by varing the six parameters, obtain the evolution equations for these six parameters, within the variational approximation. Integration of these equations would give, within the variational approximation, the motion of a moving discrete soliton. Requiring all parameters to be stationary, one obtains the conditions for constructing the solution of the stationary discrete soliton. Here we treat the stationary variational solutions. For them, we find for small amplitudes, that there is only one stationary soliton, a doublet solution, which in the continuous limit, becomes the usual nonlinear Schrodinger soliton. At a certain critical amplitude, there is a pitchfork bifurcation, above which the stable singlet soliton apprears, with the doublet soliton becoming unstable. Lastly, using the variational solutions as a starting point, we iterate the full Lagrangian to obtain numerically, the exact discrete soliton solutions. Comparison between the variational and the exact numerical discrete soliton solutions will be made. From these results, we are also able to make some general and important remarks concerning the validity and utility of the found variational soliton solutions. (c) 2005 IMACS. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available