4.4 Article

Characterization of neural cell types expressing peroxiredoxins in mouse brain

Journal

NEUROSCIENCE LETTERS
Volume 381, Issue 3, Pages 252-257

Publisher

ELSEVIER IRELAND LTD
DOI: 10.1016/j.neulet.2005.02.048

Keywords

antioxidants; astrocyte; expression pattern; microglia; neurons; oligodendrocytes

Categories

Ask authors/readers for more resources

The differential expression patterns of antioxidant enzymes observed in the brains of patients with neurodegenerative diseases suggest an important role for reactive oxygen species and antioxidant enzymes in neurodegeneration. The six mammalian peroxiredoxins (Prxs) comprise a novel family of anti-oxidative proteins that are widely distributed in most tissues, but few studies of Prx in brain tissue have been reported. The specific histology of the neural cell types in which Prxs are expressed is an important issue related to biological function and defense against oxidative stress in the brain. This study analyzed mouse brain neural cell types expressing Prx isoforms using single- or double-label immumohistochemical techniques. In neurons, immunoreactivity for Prx II-V was observed in the cytoplasm. In particular, Prx II was found in the habenular nuclei, and Prx III and V were found in the stratum lucidum of the hippocampus. Astrocytes and microglia were immunoreactive only for Prx VI and Prx I, respectively. Prx I and IV immunoreactivity was apparent in oligodendrocytes, where it was principally localized in the nuclei. The observed distribution of Prx isoforms in the mammalian brain may be indicative of their specific roles in their preferred neural cell types and subcellular locales. The results of this study will help in unraveling the physiological and pathophysiological roles of the different Prx isoforms in neural function. © 2005 Elsevier Ireland Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available