4.6 Article

Sulfonylurea agents exhibit peroxisome proliferator-activated receptor γ agonistic activity

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 25, Pages 23653-23659

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M412113200

Keywords

-

Ask authors/readers for more resources

Sulfonylurea (SU) agents, including glimepiride and glibenclamide, are the most widely used oral hypoglycemic drugs, which stimulate insulin secretion primarily by binding to the SU receptor on the plasma membrane of pancreatic beta-cells. Thiazolidinediones, such as pioglitazone and rosiglitazone, are other hypoglycemic agents that effectively improve peripheral insulin resistance through activation of peroxisome proliferator-activated receptor gamma( PPAR gamma). In the present study, we found that glimepiride specifically induced the transcriptional activity of PPAR gamma in luciferase reporter assays. Glimepiride enhanced the recruitment of coactivator DRIP205 and dissociation of corepressors such as nuclear receptor corepressor and silencing mediator for retinoid and thyroid hormone receptors. In addition, glimepride directly bound to PPAR delta in a manner competitive to rosiglitazone, which is a proven ligand for PPAR delta. Furthermore, in 3T3-L1 adipocytes, glimepiride stimulated the transcriptional activity of the gene promoter containing PPAR gamma responsive element and altered mRNA levels of PPAR gamma target genes including aP2, leptin, and adiponectin. Finally, glimepiride induced adipose differentiation in 3T3- F442A cells, which was known to differentiate into adipocytes in a PPAR gamma-dependent manner. Most effects observed with glimepiride were also seen with glibenclamide. These data strongly suggest that glimepiride and glibenclamide, both of which belong to SU agents, should have PPAR gamma agonist activity, whose potencies were 16-25% of the maximum level achieved by pioglitazone. Our observation that glimepiride and glibenclamide could act not only on SU receptor but also on PPAR gamma may give an important clue to the development of novel antidiabetic drugs, which can enhance both insulin secretion from pancreatic beta-cells and peripheral insulin sensitivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available