4.8 Article

From anomalous energy diffusion to levy walks and heat conductivity in one-dimensional systems

Journal

PHYSICAL REVIEW LETTERS
Volume 94, Issue 24, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevLett.94.244301

Keywords

-

Ask authors/readers for more resources

The evolution of infinitesimal, localized perturbations is investigated in a one-dimensional diatomic gas of hard-point particles (HPG) and thereby connected to energy diffusion. As a result, a Levy walk description, which was so far invoked to explain anomalous heat conductivity in the context of noninteracting particles is here shown to extend to the general case of truly many-body systems. Our approach does not only provide firm evidence that energy diffusion is anomalous in the HPG, but proves definitely superior to direct methods for estimating the divergence rate of heat conductivity which turns out to be 0.333 +/- 0.004, in perfect agreement with the dynamical renormalization-group prediction (1/3).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available