4.6 Article

Extracellular matrix remodeling by human granzyme B via cleavage of vitronectin, fibronectin, and laminin

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 25, Pages 23549-23558

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M412001200

Keywords

-

Ask authors/readers for more resources

Human granzyme B (GrB) released from cytotoxic lymphocytes plays a key role in the induction of target cell apoptosis when internalized in the presence of perforin. Here we demonstrate that GrB also possesses a potent extracellular matrix remodeling activity. Both native and recombinant GrB caused detachment of immortalized and transformed cell lines, primary endothelial cells, and chondrocytes. Cell detachment by GrB induced endothelial cell death (anoikis). GrB also inhibited tumor cell spreading, migration, and invasion in vitro. Investigation into the underlying mechanism revealed that GrB efficiently cleaves three proteins involved in extracellular matrix structure and function: vitronectin, fibronectin, and laminin. In vitronectin, GrB cleaves after an Arg-Lys-Asp (RGD) motif, which is part of the integrin-binding site found in matrix proteins. We propose that targeting of the integrin-extracellular matrix interface by GrB may allow perforin-independent killing of target cells via anoikis, restrict motility of tumor cells, facilitate lymphocyte migration, or directly reduce virus infectivity. It may also contribute to tissue destruction in diseases in which extracellular GrB is evident, such as rheumatoid arthritis and atherosclerosis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available