4.7 Article

Inhibition of rat brain mitochondrial electron transport chain activity by dopamine oxidation products during extended in vitro incubation: Implications for Parkinson's disease

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bbadis.2005.03.013

Keywords

dopamine; mitochondria; electron transport chain; quinones; oxygen radicals; Parkinson's disease

Ask authors/readers for more resources

Several studies on mitochondrial functions following brief exposure (5-15 min) to dopamine (DA) in vitro have produced extremely variable results. In contrast, this study demonstrates that a prolonged exposure (up to 2 h) of disrupted or lysed mitochondria to DA (0.1-0.4 mM) causes a remarkable and dose-dependent inhibition of complex I and complex IV activities. The inhibition of complex I and complex IV activities is not prevented by the antioxidant enzyme catalase (0.05 mg/ml) or the metal-chelator diethylenetriaminepentaacetic acid (0.1 mM) or the hydroxyl radical scavengers like mannitol (20 mM) and dimethyl sulphoxide (20 mM) indicating the non-involvement of OH radicals and Fenton's chemistry in this process. However, reduced glutathione (5 mM), a quinone scavenger, almost completely abolishes the DA effect on mitochondrial complex I and complex IV activities, while tyrosinase (250 units/ml) which catalyses the conversion of DA to quinone products dramatically enhances the former effect. The results suggest the predominant involvement of quinone products instead of reactive oxygen radicals in long-term DA-mediated inactivation of complex I and complex TV. This is further indicated from the fact that significant amount of quinones and quinoprotein adducts (covalent adducts of reactive quinones with protein thiols) are formed during incubation of mitochondria with DA. Monoamine oxidase A (MAO-A) inhibitor clorgyline also provides variable but significant protection against DA induced inactivation of complex I and complex IV activities, presumably again through inhibition of quinoprotein formation. Mitochondrial ability to reduce tetrazolium dye 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) in presence of a respiratory substrate like succinate (10 mM) is also reduced by nearly 85% following 2 h incubation with 0.4 mM DA. This effect of DA on mitochondrial function is also dose-dependent and presumably mediated by quinone products of DA oxidation. The mitochondrial dysfunction induced by dopamine during extended periods of incubation as reported here have important implications in the context of dopaminergic neuronal death in Parkinson's disease (PD). (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available