4.5 Article

A triple mutation in the second transmembrane domain of mouse dopamine transporter markedly decreases sensitivity to cocaine and methylphenidate

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 94, Issue 2, Pages 352-359

Publisher

WILEY
DOI: 10.1111/j.1471-4159.2005.03199.x

Keywords

cocaine; dopamine transporter; methylphenidate; random mutagenesis

Funding

  1. NIDA NIH HHS [DA014610] Funding Source: Medline

Ask authors/readers for more resources

Previously, we reported that Phe105 in transmembrane domain 2 of the mouse dopamine transporter (DAT) is crucial for high-affinity cocaine binding. In the current study, we investigated whether other residues surrounding Phe105 also affect the potency of cocaine inhibition. After three rounds of sequential random mutagenesis at these residues, we found a triple mutant (L104V, F105C and A109V) of mouse DAT that retained over 50% uptake activity and was 69-fold less sensitive to cocaine inhibition when compared with the wild-type mouse DAT. The triple mutation also resulted in a 47-fold decrease in sensitivity to methylphenidate inhibition, suggesting that the binding sites for cocaine and methylphenidate may overlap. In contrast, the inhibition of dopamine uptake by amphetamine or methamphetamine was not significantly changed by the mutations, suggesting that the binding sites for the amphetamines differ from those for cocaine and methylphenidate. Such functional but cocaine-insensitive DAT mutants can be used to generate a knock-in mouse line to study the role of DAT in cocaine addiction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available