4.5 Article

Morphological influence on mechanical characterization of ethylene-vinyl acetate copolymer-clay nanocomposites

Journal

POLYMER ENGINEERING AND SCIENCE
Volume 45, Issue 7, Pages 889-897

Publisher

WILEY
DOI: 10.1002/pen.20349

Keywords

-

Ask authors/readers for more resources

Ethylene-vinyl acetate copolymer (EVA)/montmorillonite (MMT) clay nanocomposites with varying degree of intercalation and exfoliation have been prepared using direct melt blending techniques with various degrees of polarity (9, 18, and 28 wt% vinyl acetate [VA]) and two different types of clay modification. Morphological characterization using wide-angle X-ray scattering (WAXS) and transmission electron microscopy (TEM) have indicated/confirmed the presence of intercalation and/or a combination of intercalation and exfoliation existing in the nanocomposites. The effects of these (simple intercalation or mixed intercalation/exfoliation) states and the effect of changing matrix polarity (by changing VA wt% content) on the nanocomposite mechanical behavior were studied. There is sufficient evidence from the mechanical studies that 1) the presence of nanoclay can simultaneously improve modulus and strength of the nanocomposites, and 2) the mechanical properties are a combined function of the clay concentration and the nanocomposite morphology (due to the VA wt% and presence of clay). It is shown here that interrelation between the VA wt% content and the clay exfoliation affects the mechanical properties in a way that has a positive and increasing slope with increasing loading of clay. It is shown that a clear understanding of the nanocomposite mechanical properties can be obtained from its morphological analysis. (c) 2005 Society of Plastics Engineers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available