4.6 Article

Surface X-ray-diffraction study and quantum well analysis of the growth and atomic-layer structure of ultrathin Pb/Si(111) films

Journal

PHYSICAL REVIEW B
Volume 72, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.035305

Keywords

-

Ask authors/readers for more resources

We present surface x-ray-diffraction results from Pb films grown on pretreated Si(111) substrates at 110 K. Time-resolved data show that the films follow a metastable layer-by-layer growth mode. The resulting film roughness is small, allowing for a thickness-dependent study of the film layer structure and its distortion (strain) relative to the bulk. The strain arises as a result of quantum confinement of the electrons in the film, which leads to charge distortions similar to Friedel oscillations. The charge distortions in turn lead to lattice distortions, for which two models are derived based on a free-electron gas confined to a quantum well. Extended x-ray-reflectivity data show evidence of quasibilayer distortions in the film, which are well described by the free-electron models. Oscillations in the relaxations of the Pb layers closest to the film boundaries as a function of thickness are also observed. Calculations of the net expansion or contraction of the films as a function of thickness are made that also exhibit quasibilayer variations and are consistent with the results of previous studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available