4.6 Article

XPS characterization of Au/TiO2 catalysts: Binding energy assessment and irradiation effects

Journal

APPLIED CATALYSIS A-GENERAL
Volume 391, Issue 1-2, Pages 367-376

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcata.2010.05.039

Keywords

Au/TiO2 catalyst; TiO2; XPS; X-ray induced damage; Valence band

Funding

  1. ARC of the Communaute Francaise de Belgique
  2. EC [D36]
  3. National Academy of Sciences of Ukraine

Ask authors/readers for more resources

X-ray photoelectron spectroscopy (XPS) was employed to study the surface composition and electronic structure of Au/TiO2 catalysts in comparison with TiO2 (anatase) and to reveal time-dependent X-ray irradiation damage of the samples. The occurrence of Au nano-sized particles on a TiO2 support was found to result in a slight shift of Ti 2p core-level spectrum and in changes of the valence band and X-ray induced Auger spectra, compared to TiO2-only. It was shown that for different means of energy referencing the charge-corrected Au 4f(7/2) binding energy in Au/TiO2 catalysts was 0.15-0.45 eV lower than that in pure bulk Au. Exposure to X-rays of Au/TiO2 catalysts and pure TiO2 caused a reduction of Ti 4+ oxidation state and desorption of oxygen from the surface. As a result, the surface chemical composition and electronic structure of the samples changed with time. The X-ray irradiation affected charge transfer processes in Au/TiO2 so that the pattern of X-ray induced damage in the Au-based catalyst turned out to be quite different from that in TiO2, with some characteristics displaying the very opposite features. Decreasing of the Au 4f(7/2) binding energy and concurrent increasing of the fraction of Ti3+ species observed in the beginning of X-ray irradiation of Au/TiO2 may be taken as direct evidence for charge transfer from oxygen vacancies created by irradiation to Au particles. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available