4.4 Review

Applications of free-electron lasers in the biological and material sciences

Journal

PHOTOCHEMISTRY AND PHOTOBIOLOGY
Volume 81, Issue 4, Pages 711-735

Publisher

WILEY
DOI: 10.1562/2004-11-08-IR-363R.1

Keywords

-

Ask authors/readers for more resources

Free-Electron Lasers (FELs) collectively operate from the terahertz through the ultraviolet range and via intracavity Compton backscattering into the X-ray and gamma-ray regimes. FELs are continuously tunable and can provide optical powers, pulse structures and polarizations that are not matched by conventional lasers. Representative research in the biological and biomedical sciences and condensed matter and material research are described to illustrate the breadth and impact of FEL applications. These include terahertz dynamics in materials far from equilibrium, infrared non-linear vibrational spectroscopy to investigate dynamical processes in condensed-phase systems, infrared resonant-enhanced multiphoton ionization for gas-phase spectroscopy and spectrometry, infrared matrix-assisted laser-desorption-ionization and infrared matrix-assisted pulsed laser evaporation for analysis and processing of organic materials, human neurosurgery and ophthalmic surgery using a medical infrared FEL and ultraviolet photoemission electron microscopy for nanoscale characterization of materials and nanoscale phenomena. The ongoing development of ultraviolet and Xray FELs are discussed in terms of future opportunities for applications research.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available