4.6 Article

An inorganic hydrothermal route to photocatalytically active bismuth vanadate

Journal

APPLIED CATALYSIS A-GENERAL
Volume 375, Issue 1, Pages 140-148

Publisher

ELSEVIER
DOI: 10.1016/j.apcata.2009.12.031

Keywords

Hydrothermal synthesis; Oxygen evolution; Bismuth vanadate; Photocatalysis

Funding

  1. Center for Microscopy and Image Analysis, University of Zurich
  2. Swiss National Science Foundation (SNSF) [PP002-114711/1]
  3. University of Zurich

Ask authors/readers for more resources

BiVO4 has attracted research interest as one of the most promising visible-light-driven oxidic photocatalysts for water splitting and wastewater treatment. Highly crystalline BiVO4 particles with a homogeneous morphology are now available from a straightforward, one-step hydrothermal protocol. The facile morphology control of BiVO4 particles in the Bi(NO3)(3)center dot 5H(2)O/V2O5/K2SO4 hydrothermal system is achieved through K2SO4 as an inorganic additive that brings forward materials with a high photocatalytic activity. BiVO4 particles generated from this inorganic additive-assisted approach outperform BiVO4 materials obtained via other preparative routes in the decomposition of methylene blue (MB) under visible light irradiation. The relations between morphology, crystallinity and photocatalytic O-2 evolution in the presence of AgNO3 and FeCl3 as sacrificial reagents were studied with respect to the hydrothermal optimization of material properties. Furthermore, the Bi(NO3)(3)center dot 5H(2)O/V2O5/K2SO4 hydrothermal system brings forward potassium vanadate fibers as a second phase that also exhibits promising photocatalytic properties with respect to the decomposition of MB in the presence of visible light. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available