4.5 Article

Differential regulation of phosphorylation of the cAMP response element-binding protein after activation of EP2 and EP4 prostanoid receptors by prostaglandin E2

Journal

MOLECULAR PHARMACOLOGY
Volume 68, Issue 1, Pages 251-259

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/mol.105.011833

Keywords

-

Funding

  1. NEI NIH HHS [EY11291] Funding Source: Medline

Ask authors/readers for more resources

The EP2 and EP4 prostanoid receptors are G-protein-coupled receptors whose activation by their endogenous ligand, prostaglandin (PG) E-2, stimulates the formation of intracellular cAMP. We have previously reported that the stimulation of cAMP formation in EP4-expressing cells is significantly less than in EP2-expressing cells, despite nearly identical levels of receptor expression (J Biol Chem 277: 2614 - 2619, 2002). In addition, a component of EP4 receptor signaling, but not of EP2 receptor signaling, was found to involve the activation of phosphatidylinositol 3-kinase (PI3K). In this study, we report that PGE(2) stimulation of cells expressing either the EP2 or EP4 receptor results in the phosphorylation of the cAMP response element binding protein (CREB) at serine-133. Pretreatment of cells with N-[2-(4-bromocinnamylamino) ethyl]-5-isoquinoline (H-89), an inhibitor of protein kinase A (PKA), attenuated the PGE(2)-mediated phosphorylation of CREB in EP2-expressing cells, but not in EP4-expressing cells. Pretreatment of cells with wortmannin, an inhibitor of PI3K, had no effects on the PGE(2)-mediated phosphorylation of CREB in either EP2- or EP4-expressing cells, although it significantly increased the PGE(2)-mediated activation of PKA in EP4-expressing cells. However, combined pretreatment with H-89 and wortmannin blocked PGE(2)-mediated phosphorylation in EP4-expressing cells as well as in EP2-expressing cells. PGE(2)-mediated intracellular cAMP formation was not affected by pretreatment with wortmannin, or combined treatment with wortmannin and H-89, in either the EP2- or EP4-expressing cells. These findings suggest that PGE(2) stimulation of EP4 receptors, but not EP2 receptors, results in the activation of a PI3K signaling pathway that inhibits the activity of PKA and that the PGE(2)-mediated phosphorylation of CREB by these receptors occurs through different signaling pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available