4.6 Article

BCS-BEC crossover at T=0:: A dynamical mean-field theory approach -: art. no. 024517

Journal

PHYSICAL REVIEW B
Volume 72, Issue 2, Pages -

Publisher

AMERICAN PHYSICAL SOC
DOI: 10.1103/PhysRevB.72.024517

Keywords

-

Ask authors/readers for more resources

We study the T=0 crossover from the BCS superconductivity to Bose-Einstein condensation in the attractive Hubbard Model within dynamical mean field theory (DMFT) in order to examine the validity of Hartree-Fock-Bogoliubov (HFB) mean field theory, usually used to describe this crossover, and to explore the physics beyond it. Quantum fluctuations are incorporated using iterated perturbation theory as the DMFT impurity solver. We find that these fluctuations lead to large quantitative effects in the intermediate coupling regime, leading to a reduction of both the superconducting order parameter and the energy gap relative to the HFB results. A qualitative change is found in the single-electron spectral function, which now shows an incoherent spectral weight for energies larger than three times the gap, in addition to the usual Bogoliubov quasiparticle peaks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available