4.3 Article

Tissue distribution of a human Cav1.2 α1 subunit splice variant with a 75 bp insertion

Journal

CELL CALCIUM
Volume 38, Issue 1, Pages 11-21

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ceca.2005.03.005

Keywords

L-type Ca2+ channel; alpha(1) 1.2 subunit; splice variant; human mesenchymal stem cells; semi-quantitative RT-PCR; single cell RT-PCR

Categories

Ask authors/readers for more resources

Mesenchymal stem cells from human bone marrow (MSC) express mRNA encoding the L-type Ca2+ channel Ca(v)1.2 alpha(1) subunit (alpha(1) 1.2). We now describe a splice variant including an alternative exon of 75 bp in the region between exons 9 and 10, which we identified in MSC by semi-quantitative RT-PCR. With primers specific for variants including (+9*) or excluding the 75 bp insertion (-9*), we found comparable mRNA expression patterns in MSC and in primary cultures of related connective tissue cells (chondrocytes, osteoblasts and fibroblasts). Since culture conditions might have altered variant expression, we investigated mRNA levels in various native human tissue samples (cartilage, bone, fat, liver, kidney, aorta, bladder, cardiac ventricle and atrium, CNS). We found highest levels of the +9* variant in aorta, containing smooth muscle and connective tissue cells, but the variant was expressed in all tissues. We therefore hypothesized that broad expression of +9* might be linked to the presence of vasculature and/or connective tissue structures, rather than to tissue-specific parenchymal cells (e.g. cardiomyocytes). To test this hypothesis we separated human atrium into a cardiomyocyte-enriched fraction and a cardiomyocyte-depleted fraction. RT-PCR demonstrated significantly larger levels of the +9* variant in the non-cardiomyocyte fraction. The result was even more clear in single cell RT-PCR experiments, where the +9* variant was undetectable in cardiomyocytes but present in non-cardiomyocytes. We conclude that the +9* variant is present in all human tissues investigated so far, and suggest that expression in human atrium is associated with vascular smooth muscle and/or connective tissue cells. (c) 2005 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available