4.7 Article

Injectable intrathecal delivery system for localized administration of EGF and FGF-2 to the injured rat spinal cord

Journal

EXPERIMENTAL NEUROLOGY
Volume 194, Issue 1, Pages 106-119

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.expneurol.2005.01.030

Keywords

diffusion; distribution; growth factor; drug delivery; subarachnoid

Categories

Ask authors/readers for more resources

The administration of growth factors (GFs) for treatment of experimental spinal cord injury (SCI) has shown limited benefits. One reason may be the mode of delivery to the injury site. We have developed a minimally invasive and safe drug delivery system (DDS) consisting of a highly concentrated collagen solution that can be injected intrathecally at the site of injury providing localized delivery of GFs. Using the injectable DDS. epidermal growth factor (EGF) and basic fibroblast growth factor (FGF-2) were co-delivered in the subarachnoid space of Sprague-Dawley rats. The in vivo distribution of EGF and FGF-2 in both injured and uninjured animals was monitored by immunohistochemistry. Although significant differences in the distribution of EGF and FGF-2 in the spinal cord were evident, localized delivery of the GFs resulted in significantly less cavitation at the lesion epicenter and for at least 720 full caudal to it compared to control animals without the DDS, There was also significantly more white matter sparing at the lesion epicenter in animals receiving the GFs compared to control animals. Moreover, at 14 days post-injection, delivery of the GFs resulted in significantly greater ependymal cell proliferation in the central canal immediately rostral and caudal to the lesion edge compared to controls, These results demonstrate that the injectable DDS provides a new paradigm for localized delivery of bioactive therapeutic agents to the injured spinal cord. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available