4.5 Article

Improving the ionic conductivity of NASICON through aliovalent cation substitution of Na3Zr2Si2PO12

Journal

IONICS
Volume 21, Issue 11, Pages 3031-3038

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11581-015-1498-8

Keywords

Na plus conductors; Doping

Funding

  1. US Department of Energy's Office of Electricity Delivery and Energy Reliability
  2. Sandia National Laboratories [1161548]

Ask authors/readers for more resources

Doping the zirconium site in NASICON (Na3Zr2Si2PO12) with lower valent cations enhanced the ionic transport of the material. Both Na3.2Zr1.8M0.2Si2PO12 (M=Al3+, Fe3+, Y3+) and Na3.4Zr1.8M0.2Si2PO12 (M=Co2+, Ni2+, Zn2+) exhibited a higher bulk conductivity than undoped Na3Zr2Si2PO12 at room temperature. A decrease in the low temperature activation energy for all doped NASICON was observed, which helped contribute to the higher room temperature conductivity. The lower activation energy and enhanced conductivity of doped materials were a result of alterations in the NASICON structure. The charge imbalance created by aliovalent substitution increased the sodium in the lattice resulting in more charge carriers with better mobility. Furthermore, the conductivity was optimized by the ionic radius of the species in the zirconium site. Ultimately, NASICON doped with a +2 oxidation state cation having an ionic radius of approximately 0.73 (Zn and Co) attained a maximum in conductivity. Zn-doped NASICON displayed the greatest room temperature bulk conductivity of 3.75 Au 10(-3) S/cm, while Co-doped NASICON demonstrated the greatest total conductivity of 1.55 Au 10(-3) S/cm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available