3.8 Article

Transgene expression and differentiation of baculovirus-transduced human mesenchymal stem cells

Journal

JOURNAL OF GENE MEDICINE
Volume 7, Issue 7, Pages 860-868

Publisher

WILEY
DOI: 10.1002/jgm.729

Keywords

baculovirus; mesenchymal stem cell; gene therapy; tissue engineering; transduction; adipocyte

Ask authors/readers for more resources

Background Mesenchymal stem cells (MSCs) have drawn considerable attention as vehicles for cell- or gene-based therapies, yet various problems still exist for current gene delivery vectors. On the other hand, baculovirus has emerged as a novel gene therapy vector, but its transduction of stem cells has not been reported. Methods A recombinant baculovirus expressing the enhanced green fluorescent protein (EGFP) was constructed to transduce human MSCs derived from umbilical cord blood (uMSCs) or bone marrow (bMSCs). Results In this study, we demonstrated for the first time that human uMSCs or bMSCs could be transduced by baculovirus with high efficiencies (up to approximate to 72.8% and 41.1%, respectively) and significantly elevated transgene (enhanced green fluorescent protein, EGFP) expression upon incubation with unconcentrated virus and phosphate-buffered saline for 4 h at 25 degrees C. The transduction efficiency into bMSCs could be further increased to approximate to 72.2% by lowering the cell density. The improved transgene expression was partly attributed to the enhanced virus uptake upon transduction, as determined by quantitative real-time polymerase chain reaction (Q-PCR). MSC growth was not obstructed by baculovirus transduction itself, but was somewhat hampered by EGFP expression. Nonetheless, the baculovirus-transduced cells remained capable of differentiating into adipogenic lineage. The adipogenic progenitors appeared more permissive to baculovirus transduction than the undifferentiated bMSCs, thus allowing for the maintenance and enhancement of transgene expression by repeated transduction after subculture. Conclusions These findings implicate the potential applications of baculovirus as an alternative vector to genetically modify MSCs for ex vivo gene therapy. Copyright (c) 2005 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available