4.7 Article

Dynamics of ultraslow optical solitons in a cold three-state atomic system

Journal

PHYSICAL REVIEW E
Volume 72, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.72.016617

Keywords

-

Ask authors/readers for more resources

We present a systematic study on the dynamics of a ultraslow optical soliton in a cold, highly resonant three-state atomic system under Raman excitation. Using a method of multiple scales we derive a modified nonlinear Schrodinger equation with high-order corrections that describe effects of linear and differential absorption, nonlinear dispersion, delay response of nonlinear refractive index, diffraction, and third-order dispersion. Taking these effects as perturbations we investigate in detail the evolution of the ultraslow optical soliton using a standard soliton perturbation theory. We show that due to these high-order corrections the ultraslow optical soliton undergoes deformation, change of propagating velocity, and shift of oscillating frequency. In addition, a small radiation superposed by dispersive waves is also generated from the soliton. The results of the present work may provide a guidance that is useful for experimental demonstration of ultraslow optical soliton in cold atomic systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available