4.5 Article

NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 94, Issue 2, Pages 299-306

Publisher

WILEY
DOI: 10.1111/j.1471-4159.2005.03189.x

Keywords

learning and memory; long-term potentiation; oxygen species; reactive; superoxide

Funding

  1. NINDS NIH HHS [F31 NS047852] Funding Source: Medline
  2. PHS HHS [N5034007, N5047852] Funding Source: Medline

Ask authors/readers for more resources

Previous studies have shown that N-methyl-D-aspartate (NMDA) receptor activation results in production of reactive oxygen species (ROS) and activation of extracellular signal-regulated kinase (ERK) in hippocampal area CA1. In addition, application of ROS to hippocampal slices has been shown to result in activation of ERK in area CA1. To determine whether these events were linked causally, we investigated whether ROS are required for NMDA receptor-dependent activation of ERK. In agreement with previous studies, we found that treatment of hippocampal slices with NMDA resulted in activation of ERK in area CA1. The NMDA receptor-dependent activation of ERK was either blocked or attenuated by a number of antioxidants, including the general antioxidant N-acetyl-L-cysteine (L-NAC), the superoxide-scavenging enzyme superoxide dismutase (SOD), the membrane-permeable SOD mimetic Mn(III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), the hydrogen peroxide-scavenging enzyme catalase, and the catalase mimetic ebselen. The NMDA receptor-dependent activation of ERK also was blocked by the NADPH oxidase inhibitor diphenylene iodonium (DPI) and was absent in mice that lacked p47(phox), one of the required protein components of NADPH oxidase. Taken together, our results suggest that ROS production, especially superoxide production via NADPH oxidase, is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available