4.6 Article Proceedings Paper

Engineering high-temperature stable nanocomposite materials

Journal

NANOTECHNOLOGY
Volume 16, Issue 7, Pages S401-S408

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0957-4484/16/7/014

Keywords

-

Ask authors/readers for more resources

The low thermal stability of nanoparticles typically restricts their use in catalytic and other applications to low- to moderate-temperature conditions We present a novel approach to the stabilization of nanosized noble metal particles by embedding them in a high-temperature stabilized hexa-aluminate matrix. The simple 'one-pot' approach is based on a microemulsion-templated sol-gel synthesis and yields mesoporous nanocomposite materials with pure textural porosity and excellent high-temperature stability up to about 1200 degrees C. To our knowledge, this is the first time that metal nanoparticles have been stabilized to such high temperatures. We furthermore find that the microemulsion templating allows a tailoring of the ceramic matrix without influencing the size of the embedded Pt particle. This opens up the possibility of a true multiscale engineering of nanocomposite materials. We see these novel materials therefore not only as very promising candidates for a broad range of high-temperature catalytic applications, but generally view this versatile synthesis route as a first step towards expanding the parameter range for nanoparticle applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available