4.7 Article

LMW-GS genes in Agropyron elongatum and their potential value in wheat breeding

Journal

THEORETICAL AND APPLIED GENETICS
Volume 111, Issue 2, Pages 272-280

Publisher

SPRINGER
DOI: 10.1007/s00122-005-2021-9

Keywords

Agropyron elongatum; somatic hybrid line; LMW-GS; coding sequence; evolution; wheat quality

Ask authors/readers for more resources

To study the usefulness of low-molecular-weight glutenin subunits (LMW-GS) of Agropyron elongatum (Host) Nevski to wheat (Triticum aestivum L.) quality improvement, we characterized LMW-GS genes of A. elongatum. Nine LMW-GS genes of A. elongatum, which were named AeL1 to AeL9, were cloned by genomic PCR. After sequencing, we obtained complete open reading frames from AeL2 to AeL8 and partial genes of AeL1 and AeL9. All nine sequences are homoeologous to those of wheat and related grasses. Comparison of the deduced amino acid sequences with those of published LMW-GS suggests that the basic structures of all the subunits are very similar. However, except for AeL4 and AeL5, which contain the identical N-terminal sequence with LMW-m, other LMW-GS sequences separated from A. elongatum cannot be classified according to previous criteria for the three types: LMW-m (methionine), LMW-s (serine), and LMW-i (isoleucine), and then 12 groups. In addition, there are some characters in the LMW-GS sequences of A. elongatum: AeL2, AeL3, and AeL6 involve a Cys residue in the signal peptide respectively, which is absent in most of LMW-GS; AeL3, AeL6, AeL8, and AeL9 start their first Cys residues in the N-terminal repetitive domains, respectively; both AeL2 and AeL5 have nine Cys residues, with an extra Cys residue in the N-terminal repetitive domain and the repetitive and glutamine-rich domain; AeL2, AeL3, AeL6, and AeL9 comprise long repetitive domains. Phylogenetic analysis indicates that there is a relatively weak sequence identity between the LMW-GS genes from A. elongatum cloned in this study and those reported from other plants. Three LMW-GS sequences, AeL2, AeL3, and AeL6, are clustered to Glu-A3 from wheat than to those from other plants. The possible use of these genes in relation to the high quality of hybrid wheat is discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available